Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater
نویسندگان
چکیده
Planning and design of coastal protection works like floating pipe breakwater require information about the performance characteristics of the structure in reducing the wave energy. Several researchers have carried out analytical and numerical studies on floating breakwaters in the past but failed to give a simple mathematical model to predict the wave transmission through floating breakwaters by considering all the boundary conditions. Computational Intelligence techniques, such as, artificial neural networks (ANN), fuzzy logic, genetic programming and support vector machine (SVM) are successfully used to solve complex problems. In the present paper, a hybrid genetic algorithm tuned support vector machine regression (GA-SVMR) model is developed to predict wave transmission of horizontally interlaced multilayer moored floating pipe breakwater (HIMMFPB). Furthermore, optimal SVM and kernel parameters of GA-SVMR models are determined by genetic algorithm. The GA-SVMR model is trained on the data set obtained from experimental wave transmission of HIMMFPB using regular wave flume at Marine Structure Laboratory, National Institute of Technology, Karnataka, Surathkal, Mangalore, India. The results are compared with ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) models in terms of correlation coefficient, root mean square error and scatter index. Performance of GA-SVMR is found to be reliably superior. b-spline kernel function performs better than other kernel functions for the given set of data.
منابع مشابه
Hybrid genetic algorithm tuned support vector machine regression for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater
Support Vector Machine (SVM) works on structural risk minimization principle that has greater generalization ability and is superior to the empirical risk minimization principle as adopted in conventional neural network models. However, it is noticed that one particular model in isolation cannot capture all data patterns easily. In the present paper, a hybrid genetic algorithm tuned support vec...
متن کاملApplication of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements
This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملApplication of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Engineering Software
دوره 45 شماره
صفحات -
تاریخ انتشار 2012